Sunday, 16 February 2020

How to find moving average in matlab


Eu preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que obter a média móvel em N9 dias. O array Im computing in é 4 séries de 365 valores (M), que são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu pesquisei um pouco sobre as médias móveis eo comando conv e encontrei algo que eu tentei implementar no meu código. Então, basicamente, eu computo o meu médio e plotá-lo com uma média móvel (errada). Eu escolhi o valor de wts fora do site mathworks, de modo que está incorreto. (Fonte: mathworks. nlhelpeconmoving-average-trend-estimation. html) Meu problema, porém, é que eu não entendo o que este wts é. Alguém poderia explicar Se tem algo a ver com os pesos dos valores: que é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. September 23 14 at 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, wts é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a um. Se você deseja pesar cada valor uniformemente e fazer um filtro de tamanho N em movimento, então você gostaria de fazer Usando o argumento válido em conv resultará em ter menos valores em Ms do que você tem em M. Use o mesmo se você não se importa os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como Você deve ler a documentação conv e cconv para obter mais informações se você já não. Usando MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e anexar a média móvel para a matriz que eu estou tentando Calcular a média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado como a matriz 39 como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há nenhum valor nas 2 linhas inferiores para a 4a coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Em vez disso, você é forçado a usar um par de linhas: 29 de setembro de 2017 Movendo a média por convolução O que é média móvel e para que é bom Como a média móvel é feita usando a convolução A média móvel é normalmente uma operação usada para suprimir o ruído de um Sinal: ajustamos o valor de cada ponto à média dos valores em sua vizinhança. Por uma fórmula: Aqui x é a entrada ey é o sinal de saída, enquanto o tamanho da janela é w, suposto ser ímpar. A fórmula acima descreve uma operação simétrica: as amostras são tomadas de ambos os lados do ponto real. Abaixo está um exemplo da vida real. O ponto em que a janela é colocada realmente é vermelho. Valores fora de x são supostos ser zeros: Para brincar e ver os efeitos da média móvel, dê uma olhada nesta demonstração interativa. Como fazê-lo por convolução Como você pode ter reconhecido, o cálculo da média móvel simples é semelhante à convolução: em ambos os casos, uma janela é deslizada ao longo do sinal e os elementos na janela são resumidos. Então, dar-lhe uma tentativa de fazer a mesma coisa usando convolução. Use os seguintes parâmetros: A saída desejada é: Como primeira aproximação, vamos tentar o que obtemos ao converter o sinal x pelo k kernel seguinte: A saída é exatamente três vezes maior do que o esperado. Também pode ser visto que os valores de saída são o resumo dos três elementos na janela. É porque durante a convolução a janela é deslizada ao longo, todos os elementos nele são multiplicados por um e, em seguida, resumido: yk 1 cdot x 1 cdot x 1 cdot x Para obter os valores desejados de y. A saída deve ser dividida por 3: Por uma fórmula incluindo a divisão: Mas não seria ótimo para fazer a divisão durante convolução Aqui vem a idéia, reorganizando a equação: Então vamos usar o k kernel seguinte: Desta forma, vamos Obter a saída desejada: Em geral: se queremos fazer a média móvel por convolução tendo um tamanho de janela de w. Nós usaremos o k kernel a seguir: Uma função simples que faz a média móvel é: Um exemplo de uso é: Criado em quarta-feira, 08 de outubro de 2008 20:04 Atualizado em Quinta-feira, 14 de Março de 2017 01:29 Escrito por Batuhan Osmanoglu Hits: 41455 Moving Average Em Matlab Muitas vezes eu me encontro na necessidade de calcular a média dos dados que tenho para reduzir o ruído um pouco. Eu escrevi funções de casal para fazer exatamente o que eu quero, mas matlabs construído em função de filtro funciona muito bem também. Aqui Ill escrever sobre 1D e 2D média de dados. 1D filtro pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente do numerador para o filtro (b), o coeficiente do denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como o filtro funciona, você pode digitar: Aqui está uma implementação rápida e suja de um filtro de média móvel 16 por 16. Primeiro precisamos definir o filtro. Uma vez que tudo o que queremos é a contribuição igual de todos os vizinhos, podemos apenas usar a função uns. Nós dividimos tudo com 256 (1616) desde que nós não queremos mudar o nível geral (amplitude) do sinal. Para aplicar o filtro podemos simplesmente dizer o seguinte Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso Range está no eixo Y e Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em Gama e 16 pixels de largura em Azimute.

No comments:

Post a Comment